------------------------ COPYRIGHT NOTICE --------------------------------- Los Alamos National Laboratory This program was prepared by the Regents of the University of California at Los Alamos National Laboratory (the University) under Contract No. W-7405-ENG-36 with the U.S. Department of Energy (DOE). The University has certain rights in the program pursuant to the contract and the program should not be copied or distributed outside your organization. All rights in the program are reserved by the DOE and the University. Neither the U.S. Government nor the University makes any warranty, express or implied, or assumes any liability or responsibility for the use of this software. ******************************************************* * --- SOLVE --- * * * * Automated structure solution for MAD and MIR * * * * Please type "solvehelp" for on-line help * * or see "http://solve.lanl.gov" * ******************************************************* (version 2.09 of 02-Apr-2005 / Size = 6) Tom Terwilliger, Los Alamos National Laboratory, "terwilliger@LANL.gov" Dataset title: SOLVE 06-Apr-05 Space group number is: 5 Space group name from file name is: c2 Rescaling standard dataset to put it on approximate absolute scale. NRES = 100; expected = 98000.00 ; observed in lowest resolution shell = 107053.9 ... Scale factor = 0.9154266 -------------------------------------------------- *** Analysis of this scaled MAD data set *** Fbar,sigma,Delano,sigma for 3 wavelengths written to: mad_fbar.scl F+,sigma,F-,sigma for 3 wavelengths written to: mad_fpfm.scl ** Completeness of Fbar data at each wavelength: ** Completeness of dataset 1 ( F > 2.000000 * sigma) Wavelength # 1 ! a label for this wavelength Reflections observed: Possible Found % complete shell dmin 1 5.200 364 360 98.9 2 3.900 486 484 99.6 3 3.640 189 188 99.5 4 3.445 173 172 99.4 5 3.250 237 237 100.0 6 3.120 184 183 99.5 7 2.990 217 216 99.5 8 2.860 256 252 98.4 9 2.730 312 308 98.7 10 2.600 362 267 73.8 total 2780 2667 95.9 Completeness of dataset 2 ( F > 2.000000 * sigma) set 2 Reflections observed: Possible Found % complete shell dmin 1 5.200 364 357 98.1 2 3.900 486 482 99.2 3 3.640 189 188 99.5 4 3.445 173 172 99.4 5 3.250 237 237 100.0 6 3.120 184 183 99.5 7 2.990 217 210 96.8 8 2.860 256 248 96.9 9 2.730 312 288 92.3 10 2.600 362 228 63.0 total 2780 2593 93.3 Completeness of dataset 3 ( F > 2.000000 * sigma) set 3 Reflections observed: Possible Found % complete shell dmin 1 5.200 364 355 97.5 2 3.900 486 481 99.0 3 3.640 189 188 99.5 4 3.445 173 170 98.3 5 3.250 237 237 100.0 6 3.120 184 183 99.5 7 2.990 217 211 97.2 8 2.860 256 247 96.5 9 2.730 312 286 91.7 10 2.600 362 225 62.2 total 2780 2583 92.9 ** R-factors for F-bar data dispersive differences ** Dispersive differences lambda 2 - lambda 1 (Delta f-prime = 6.900000 ) Differences by shell: shell dmin nobs Fbar R scale SIGNAL NOISE S/N 1 5.200 354 250.947 0.037 1.000 11.11 3.71 2.99 2 3.900 478 289.474 0.021 1.000 6.64 3.64 1.82 3 3.640 187 256.106 0.018 1.000 4.44 4.06 1.09 4 3.445 172 212.002 0.022 1.000 4.11 4.03 1.02 5 3.250 235 205.104 0.021 1.000 3.29 3.95 0.83 6 3.120 181 188.273 0.025 1.000 4.81 3.68 1.31 7 2.990 210 160.278 0.027 1.000 3.72 4.19 0.89 8 2.860 247 144.703 0.028 0.999 3.20 3.87 0.83 9 2.730 287 127.549 0.035 1.000 3.22 4.59 0.70 10 2.600 226 117.926 0.038 0.999 2.87 4.74 0.60 Total: 2577 204.305 0.026 1.000 5.86 4.03 1.35 Recommended resolution cut-off = 2.60 Dispersive differences lambda 3 - lambda 1 (Delta f-prime = 8.250000 ) Differences by shell: shell dmin nobs Fbar R scale SIGNAL NOISE S/N 1 5.200 351 251.323 0.039 0.999 11.66 3.72 3.13 2 3.900 477 289.185 0.023 1.000 7.44 3.57 2.09 3 3.640 187 255.567 0.021 1.000 5.46 4.03 1.35 4 3.445 169 212.785 0.023 1.000 4.55 3.93 1.16 5 3.250 236 204.307 0.021 1.000 3.94 3.80 1.04 6 3.120 183 188.150 0.029 1.000 5.92 3.64 1.63 7 2.990 210 157.911 0.031 1.000 4.42 4.07 1.08 8 2.860 245 145.425 0.031 0.999 4.27 3.63 1.18 9 2.730 285 127.739 0.036 0.999 3.18 4.62 0.69 10 2.600 223 118.708 0.036 0.999 3.12 4.26 0.73 Total: 2566 204.296 0.028 1.000 6.45 3.91 1.54 Recommended resolution cut-off = 2.60 Dispersive differences lambda 3 - lambda 2 (Delta f-prime = 1.350000 ) Differences by shell: shell dmin nobs Fbar R scale SIGNAL NOISE S/N 1 5.200 353 254.151 0.010 1.000 1.75 2.79 0.63 2 3.900 471 287.779 0.008 1.000 1.13 2.64 0.43 3 3.640 183 253.214 0.009 1.000 0.56 2.88 0.20 4 3.445 167 213.508 0.012 1.000 1.61 2.87 0.56 5 3.250 234 205.151 0.011 1.000 0.00 2.94 0.00 6 3.120 181 189.134 0.012 1.000 1.50 2.71 0.55 7 2.990 204 160.405 0.017 1.000 1.97 3.02 0.65 8 2.860 243 144.802 0.017 1.000 1.53 2.86 0.53 9 2.730 280 128.364 0.024 1.000 1.78 3.49 0.51 10 2.600 219 119.348 0.023 1.000 0.00 3.57 0.00 Total: 2535 204.923 0.012 1.000 1.34 2.97 0.42 Recommended resolution cut-off = 2.68 Anomalous differences lambda 1 (f" = 3.400000 ) Differences by shell: shell dmin nobs Fbar R scale SIGNAL NOISE S/N 1 5.200 356 249.568 0.021 1.000 5.86 4.56 1.29 2 3.900 476 286.584 0.016 1.000 4.25 4.24 1.00 3 3.640 184 257.083 0.016 1.000 2.07 4.83 0.43 4 3.445 172 212.104 0.021 1.000 3.33 4.71 0.71 5 3.250 235 206.109 0.017 1.000 1.85 4.24 0.44 6 3.120 181 187.386 0.022 0.999 3.58 3.98 0.90 7 2.990 210 154.747 0.026 0.999 2.18 4.74 0.46 8 2.860 250 142.195 0.030 0.999 3.39 4.38 0.77 9 2.730 301 125.378 0.033 0.999 0.65 5.34 0.12 10 2.600 256 116.327 0.037 1.000 0.00 5.69 0.00 Total: 2621 201.054 0.022 1.000 3.42 4.68 0.66 Recommended resolution cut-off = 2.67 Anomalous differences lambda 2 (f" = 4.800000 ) Differences by shell: shell dmin nobs Fbar R scale SIGNAL NOISE S/N 1 5.200 356 252.146 0.042 0.999 13.71 5.54 2.47 2 3.900 476 288.261 0.030 1.000 9.81 5.46 1.80 3 3.640 184 255.315 0.027 1.000 6.91 5.76 1.20 4 3.445 167 212.632 0.032 1.000 6.32 5.87 1.08 5 3.250 232 204.717 0.031 1.000 6.37 5.53 1.15 6 3.120 177 188.925 0.032 1.000 5.70 5.27 1.08 7 2.990 203 157.884 0.037 0.999 3.97 6.24 0.64 8 2.860 244 143.025 0.040 0.999 4.35 6.08 0.71 9 2.730 283 127.971 0.048 0.999 3.07 7.11 0.43 10 2.600 220 119.988 0.049 1.000 0.00 7.16 0.00 Total: 2542 204.547 0.035 1.000 7.78 6.00 1.19 Recommended resolution cut-off = 2.60 Anomalous differences lambda 3 (f" = 2.860000 ) Differences by shell: shell dmin nobs Fbar R scale SIGNAL NOISE S/N 1 5.200 351 253.965 0.014 1.000 1.50 4.54 0.33 2 3.900 473 287.310 0.012 1.000 1.18 4.33 0.27 3 3.640 184 253.025 0.014 1.000 0.00 4.88 0.00 4 3.445 168 210.803 0.017 0.999 0.00 4.93 0.00 5 3.250 228 204.891 0.015 0.999 0.00 4.42 0.00 6 3.120 178 191.177 0.017 1.000 0.00 4.24 0.00 7 2.990 205 158.395 0.024 0.999 0.00 4.98 0.00 8 2.860 242 143.961 0.026 0.999 0.97 4.67 0.21 9 2.730 277 127.379 0.030 0.999 0.00 5.80 0.00 10 2.600 220 119.936 0.035 1.000 0.00 5.52 0.00 Total: 2526 204.567 0.017 1.000 0.00 4.82 0.12 Recommended resolution cut-off = 3.90 ANALYZE_MAD: Run MADMRG and MADBST on MAD data to get ready for SOLVE Correlation of anomalous differences at different wavelengths. (You should probably cut your data off at the resolution where this drops below about 0.3. A good dataset has correlation between peak and remote of at least 0.7 overall. Data with correlations below about 0.5 probably are not contributing much.) CORRELATION FOR WAVELENGTH PAIRS DMIN 1 VS 2 1 VS 3 2 VS 3 5.20 0.90 0.71 0.80 3.90 0.76 0.55 0.68 3.64 0.69 0.44 0.69 3.44 0.64 0.44 0.50 3.25 0.59 0.27 0.50 3.12 0.57 0.34 0.47 2.99 0.58 0.18 0.39 2.86 0.42 0.30 0.46 2.73 0.33 0.17 0.31 2.60 0.19 0.09 0.32 ALL 0.66 0.39 0.55 Final refined values of fprime and fdoubleprime Form factors at lambda = 0.9000 f-prime = -2.58 f" = 3.71 Form factors at lambda = 0.9794 f-prime = -8.26 f" = 6.52 Form factors at lambda = 0.9797 f-prime = -9.01 f" = 2.26 Fa Patterson from MADBST to be written to: patterson.patt Script file suitable for running SOLVE written to: solve_mad.script Datafile for SOLVE with MADMRG-compressed dataset ("Fnat",sig,"Fder",sig,"Delano",sig,iso diffs, ano diffs, , from MADBST) is: solve.data **** SOLVE: Solutions to MIR or SIR datasets ****** Derivatives considered: 3 (NSET) Cross-vectors tested in HASSP: 20 (ICRMAX, DEFAULT=20) HASSP solutions saved per deriv: 30 (NTOPHASSP, DEFAULT=30) Fourier peaks saved per map: 30 (NTOPFOUR, DEFAULT=10) Sites per derivative: 2 (NSOLSITE, DEFAULT=20) Derivative solutions per seed: 5 (NTOPDERIV, DEFAULT=5) Seeds per derivative tested: 10 (NSEEDTEST,DEFAULT=10) Sorted seeds to use 5 (NSEEDSOLVE, DEFAULT=5) Number of final solutions saved: 5 (NTOPSOLVE, DEFAULT=5) Solutions obtained will be compared to input solution (ICHECKSOLVE) Correlated phasing used (CORRELPHASE) Patterson map for derivative 2 will be read directly from: patterson.patt For derivative 2 the heavy atom structure factor components parallel to and perpendicular to the native structure factor will be read from columns 9 and 10 Datafile with 10 columns of data: Title:MADMRG output (cols 1 to 8) and MADBST fh cos,sin theta (c Data: madmrg: MOCK FNAT Data: madmrg: MOCK sig FNAT Data: madmrg: MOCK FDER Data: madmrg: MOCK sig FDER Data: madmrg: MOCK DEL ANO Data: madmrg: MOCK sig DEL ANO Data: madmrg: Del iso for Patterson Data: madmrg: Sigma of del iso for Patterson Data: = Fa component along Fo weighted by fom Data: = weighted Fa component perpendicular to Fo Fnat,sigma taken from columns 1 2 Fder,sig,Delano,sig deriv 2 from cols: 3 4 5 6 Check solution to be compared to all solutions found: Derivative 1: Site X Y Z Derivative 2: Site X Y Z 1 0.481 0.497 0.094 2 0.973 0.788 0.945 Derivative 3: Site X Y Z ********************************************************** ANALYZE_SOLVE: analysis of top 1 solutions ************************************************************* Solution 1 *********************** Analysis of this solution ************* ****** Analysis of non-randomness of native Fourier map ****** A. Maps with distinct solvent regions havea high standard deviation of local r.m.s. electron density. For this map the SD of this local r.m.s. is 0.2883532 B. Maps with distinct solvent regions also have a high correlation of local r.m.s. electron density with density at neighboring locations. Typical values for poor maps in this structure solution are 0.2778453 +/- 5.9644025E-02 For this map the correlation of r.m.s. density in neighboring boxes is 0.3177819 The correlation coefficient is used here in scoring. Skew of the map is: 0.2887446 ****** Analysis of derivative solutions with the difference Patterson ****** and with cross-validation difference Fouriers ----------------------------------------------- Derivative # 2 List of sites analyzed for compatibility with difference Patterson PEAK X Y Z OPTIMIZED RELATIVE OCCUPANCY 1 0.484 0.500 0.097 87.322 2 0.526 0.278 0.056 38.273 Evaluation of this test soln with 2 sites after optimizing occupancy of each site Cross-vectors for sites 1 and 1 (excluding origin; 1000 = 1 sigma): # U V W HEIGHT PRED HEIGHT SYMM# 1 -0.969 0.000 -0.194 14896.8 15250.4 2 Cross-vectors for sites 2 and 1 (excluding origin; 1000 = 1 sigma): # U V W HEIGHT PRED HEIGHT SYMM# 1 0.042 -0.222 -0.042 4232.84 3342.12 1 2 -1.010 -0.222 -0.153 5438.59 3342.12 1 Cross-vectors for sites 2 and 2 (excluding origin; 1000 = 1 sigma): # U V W HEIGHT PRED HEIGHT SYMM# 1 -1.052 0.000 -0.111 1223.88 2929.69 2 Overall quality of this Patterson soln = 7488.57 Overall quality of the fit to patterson = 1.28245 Avg normalized peak height = 3348.99 Cross-validation fouriers calculated with all heavy atoms in all derivs except the site being evaluated and any sites equivalent to it. Site x y z occ B -- PEAK HEIGHT -- 1 0.482 0.497 0.094 0.758 55.365 4.49 2 0.528 0.283 0.057 0.458 60.000 4.07 Summary of scoring for this solution: -- over many solutions-- -- this solution -- Criteria MEAN SD VALUE Z-SCORE Pattersons: 2.09 1.95 5.58 1.79 Cross-validation Fourier: 3.72 2.33 7.13 1.46 NatFourier CCx100: 27.8 5.96 31.8 0.670 Mean figure of meritx100: 0.000E+00 10.2 59.7 5.86 Correction for Z-scores: -2.36 Overall Z-score value: 7.42 ****** Overall analysis of phasing for solution 1************ *** Re-estimation of scattering factors by refinement of occupancies using *** dispersive and anomalous differences. Estimation of scattering factors at each wavelength by refinement of occupancies relative to those found from the initial refinement carried out with data from MADMRG. Refining iso occupancies for iso diffs lambda 2 - lambda 1 Results of refinement: Ratio of occupancies to standard refinement: 1.055 +/- 0.221 Delta f-prime based on input f-prime values: 5.684 New estimate of delta f-prime: 5.995 +/- 1.257 with sign of: -1. and Z of 33.0 Refining iso occupancies for iso diffs lambda 3 - lambda 1 Results of refinement: Ratio of occupancies to standard refinement: 1.063 +/- 0.189 Delta f-prime based on input f-prime values: 6.427 New estimate of delta f-prime: 6.832 +/- 1.216 with sign of: -1. and Z of 33.6 Refining iso occupancies for iso diffs lambda 3 - lambda 2 Results of refinement: Ratio of occupancies to standard refinement: 2.606 +/- 0.945 Delta f-prime based on input f-prime values: 0.743 New estimate of delta f-prime: 1.935 +/- 0.702 with sign of: -1. and Z of 9.8 Refining ano occupancies for ano diffs lambda 1 Results of refinement: Ratio of occupancies to standard refinement: 0.609 +/- 0.300 f" value based on input values: 3.712 New estimate of f": 2.261 +/- 1.112 Refining ano occupancies for ano diffs lambda 2 Results of refinement: Ratio of occupancies to standard refinement: 0.703 +/- 0.329 f" value based on input values: 6.525 New estimate of f": 4.584 +/- 2.147 Refining ano occupancies for ano diffs lambda 3 Results of refinement: Ratio of occupancies to standard refinement: 0.618 +/- 0.301 f" value based on input values: 2.259 New estimate of f": 1.396 +/- 0.681 Fitting f-prime values. Restraints: Lambda Target f-prime final f-prime weight 1 -2.579 -2.579 0.001 2 -8.263 -8.263 0.001 3 -9.006 -9.006 0.001 Delta-fprime targets: Lambda i j target delta-fprime final delta-fprime wgt 1 2 5.995 5.684 32.97 1 3 6.832 6.427 33.62 2 3 1.935 0.743 9.78 Residual for restraints: 0.00000E+00 Residual for targets: 4.7541 Final refined values of f-prime and f" Wavelength ------- f-prime -------- --------f"-------------- last refinement Refined last refinement Refined 1 -2.579 -2.579 3.712 2.261 2 -8.263 -8.263 6.525 4.584 3 -9.006 -9.006 2.259 1.396 *** Done with re-estimation of scattering factors *** HEAVY: Refine heavy atom parameters File title: SOLVE 06-Apr-05 CRYSTALLOGRAPHIC PARAMETERS A = 76.08 B = 27.97 C = 42.36 alpha = 90.00 beta = 103.20 gamma = 90.00 PHASES CALCULATED EVERY 5 DEGREES RESIDUALS CALCULATED ON EXTRA ZEROTH CYCLE ONLY SIGMAS FROM data FILE WILL BE USED STATISTICS WILL BE PRINTED ON ZEROTH CYCLE, SHIFTS ON LAST PHASING WILL BE DONE TAKING INTO ACCOUNT THE CORRELATIONS AMONG DERIVATIVES THE GROUPS OF DERIVATIVES WITH CORRELATIONS WILL BE UPDATED THE BETA VALUES FOR EACH DERIV WILL BE SET TO 1.0 PHASE-AVERAGED RESIDUALS WILL BE USED FOR PHASING TYPE OF REFINEMENT SELECTED: UNPHASED ORIGIN-REMOVED PATTERSON REFINEMENT ONLY Bayesian correlated MAD phasing will be used with wavelength 2 as the reference wavelength. RESOLUTION LIMITS IN ANGSTROMS: 2.603 20.000 MINIMUM RATIO OF FDER TO RMS LACK-OF-CLOSURE FOR INCLUSION IN REFINEMENT OR PHASING= 0.000 MINIMUM NATIVE F: 0.000 MINIMUM FIGURE OF MERIT FOR PHASED REFINEMENT: 0.000 MINIMUM ALLOWED ISOTROPIC B: 0.000 PARAMETER SHIFTS GREATER THAN 0.0000 TIMES SIGMA WILL BE SCALED BY 0.5000 MINIMUM RATIO OF FNAT/SIGMA OR FDER/SIGMA TO INCLUDE: 1.000 NUMBER OF REFINEMENT CYCLES IS 2 DERIVATIVES REFINED DURING THESE CYCLES ARE : 0 0 TYPE OF OUTPUT SELECTED IS: +10 COLUMNS OF HENDRICKSON-LATTMAN COEFFICIENTS 1 INPUT data FILE WITH 12 COLUMNS IS: mad_fpfm.scl COLUMN 0 : mad_fpfm.scl Fnat,sig,(F+,sig,F-,sig)n COLUMN 1 : F from I_TO_F Wavelength # 1 ! a label for this wavelengt COLUMN 2 : SIGMA of F Wavelength # 1 ! a label for this wavelengt COLUMN 3 : F from I_TO_F Wavelength # 1 ! a label for this wavelengt COLUMN 4 : SIGMA of F Wavelength # 1 ! a label for this wavelengt COLUMN 5 : F from I_TO_F set 2 COLUMN 6 : SIGMA of F set 2 COLUMN 7 : F from I_TO_F set 2 COLUMN 8 : SIGMA of F set 2 COLUMN 9 : F from I_TO_F set 3 COLUMN 10 : SIGMA of F set 3 COLUMN 11 : F from I_TO_F set 3 COLUMN 12 : SIGMA of F set 3 DERIVATIVE INFORMATION FOR 3 COMPOUNDS COMPOUND 1 TEST REFINEMENT LAMBDA 3 (ANO ONLY) COLUMNS FOR F+, SIGMA, F-, SIGMA 1 2 3 4 THIS DERIVATIVE WILL NOT BE USED IN PHASING ANOMALOUS DIFFERENCES WILL BE USED IN PHASING FOR THIS DERIVATIVE ONLY ANO DIFFERENCES WILL BE USED IN REFINEMENT AND PHASING FOR THIS DERIVATIVE. AFTER OVERALL SCALING OBSERVED STRUCTURE FACTORS AND SIGMAS WILL BE DIVIDED BY : 1.000*EXP( 0.000*(SIN theta/LAMBDA)**2 ) THEN SIGMAS WILL BE MULTIPLIED BY 1.000 NO PARAMETERS REFINED FOR ATOM LAM1 WITH ZERO OCCUPANCY COMPOUND 2 set 2 COLUMNS FOR F+, SIGMA, F-, SIGMA 5 6 7 8 THIS DERIVATIVE WILL BE USED IN PHASING ANOMALOUS DIFFERENCES WILL BE USED IN PHASING FOR THIS DERIVATIVE AFTER OVERALL SCALING OBSERVED STRUCTURE FACTORS AND SIGMAS WILL BE DIVIDED BY : 1.000*EXP( 0.000*(SIN theta/LAMBDA)**2 ) THEN SIGMAS WILL BE MULTIPLIED BY 1.000 COMPOUND 3 set 3 COLUMNS FOR F+, SIGMA, F-, SIGMA 9 10 11 12 THIS DERIVATIVE WILL NOT BE USED IN PHASING ANOMALOUS DIFFERENCES WILL BE USED IN PHASING FOR THIS DERIVATIVE AFTER OVERALL SCALING OBSERVED STRUCTURE FACTORS AND SIGMAS WILL BE DIVIDED BY : 1.000*EXP( 0.000*(SIN theta/LAMBDA)**2 ) THEN SIGMAS WILL BE MULTIPLIED BY 1.000 NO PARAMETERS REFINED FOR ATOM LAM3 WITH ZERO OCCUPANCY CARRYING OUT STANDARD REFINEMENT Total of 2 cycles will be done Derivs refined will be 0 0 SUMMARY OF RESULTS ON FINAL CYCLE: NUMBER OF REFLECTIONS READ = 2668 NUMBER OF F .GT. FMIN = 2668 NUMBER OF F IN RES. LIMITS = 2668 NUMBER OF F .GT. MIN = 2634 NUMBER OF F USED TO REFINE = 0 FIGURE OF MERIT < 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 # OF REFLECTIONS 322 291 317 255 238 204 228 242 295 275 FIGURE OF MERIT WITH RESOLUTION DMIN: TOTAL 8.82 5.76 4.56 3.89 3.45 3.13 2.88 2.69 N: 2667 153 233 299 338 389 417 449 389 MEAN FIG MERIT: 0.48 0.75 0.69 0.68 0.61 0.48 0.45 0.31 0.24 RMS ANOMALOUS FH/E [f" PART OF FH / RMS ANO ERROR]: LAMBDA: 1 0.5 0.9 0.9 0.7 0.7 0.5 0.3 0.2 0.1 LAMBDA: 2 0.7 1.0 0.9 0.8 0.8 0.6 0.5 0.4 0.3 LAMBDA: 3 0.3 0.6 0.7 0.5 0.3 0.3 0.2 0.1 0.1 RMS DISPERSIVE FH/E [Delta-f-prime PART OF FH / RMS DISPERSIVE ERROR]: L1 VS L2: 0.8 1.1 1.2 1.0 0.9 0.7 0.5 0.4 0.3 L1 VS L3: 0.9 1.3 1.3 1.0 0.9 0.8 0.5 0.4 0.3 L2 VS L3: 0.2 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.0 RMS ANOMALOUS FH [f" PART OF FH] AS % of F: LAMBDA: 1 0.9 1.3 1.4 0.8 0.8 0.7 0.7 0.7 0.6 LAMBDA: 2 1.8 2.7 2.9 1.6 1.6 1.4 1.4 1.4 1.3 LAMBDA: 3 0.6 0.8 0.9 0.5 0.5 0.4 0.4 0.4 0.4 RMS DISPERSIVE FH [Delta-f-prime PART OF FH] AS % of F: L1 VS L2: 2.3 3.3 3.6 2.1 1.9 1.7 1.7 1.7 1.6 L1 VS L3: 2.6 3.7 4.0 2.3 2.2 2.0 1.9 1.9 1.8 L2 VS L3: 0.3 0.4 0.5 0.3 0.3 0.2 0.2 0.2 0.2 RMS ANOMALOUS ERRORS [ CALC - OBS VALUE OF (F+ - F-)/2], IN % OF RMS F: LAMBDA: 1 1.8 1.5 1.6 1.2 1.2 1.5 2.0 2.9 4.3 LAMBDA: 2 2.7 2.8 3.2 2.1 2.1 2.4 2.8 3.7 4.1 LAMBDA: 3 1.7 1.3 1.3 1.0 1.4 1.6 2.0 2.9 3.9 RMS DISPERSIVE ERRORS [ CALC - OBS VALUE OF (F(i) - F(j))], IN % OF RMS F: L1 VS L2: 3.0 3.0 3.0 2.1 2.2 2.5 3.4 4.4 5.9 L1 VS L3: 3.0 2.9 3.0 2.3 2.4 2.6 3.6 4.6 5.7 L2 VS L3: 1.9 1.5 1.4 1.2 1.4 1.7 2.4 3.2 4.7 CORRELATED ANOMALOUS ERRORS BY WAVELENGTH (%): LAMBDA: 1 1.1 1.1 1.3 0.9 0.9 1.1 1.2 1.7 1.6 LAMBDA: 2 2.3 2.2 2.7 1.8 1.9 2.3 2.4 3.4 3.2 LAMBDA: 3 0.7 0.7 0.8 0.5 0.6 0.7 0.7 1.1 1.0 RMS F BY WAVELENGTH: LAMBDA: 1 239.6 328.3 275.9 344.1 299.6 245.4 198.5 153.8 132.4 LAMBDA: 2 241.4 328.2 276.3 347.9 294.0 245.3 199.3 153.2 135.0 LAMBDA: 3 242.3 329.7 277.0 347.7 298.2 246.5 199.4 151.9 135.6 PARAMETER SHIFTS FOR DERIV 2 : set 2 SCALE FACTOR OVERALL B CURRENT VALUES: 1.0000 0.0000 SITE ATOM OCCUP X Y Z B CURRENT VALUES: 1 Se 0.7575 0.4821 0.4972 0.0938 55.3655 CURRENT VALUES: 2 Se 0.4584 0.5277 0.2832 0.0570 60.0000 ************************************************************* ************************************************************* *** Summary of solutions and their relationships to each other and to check solution *** ---------------------------------------------------------- solution # 1 with overall quality = 7.417267 Derivative 2 with 2 sites. Overall scale = 1.000000 and overall b of 0.0000000E+00 0.4820956 0.4972169 9.3780220E-02 0.7575110 55.36546 0.5276953 0.2831880 5.6996226E-02 0.4584486 60.00000 Best match of solution 1 -> solution 2: -------- solution 1 -------- -------------solution 2 ------ site x y z site x y z DIST (A) Derivative 2 1 0.482 0.497 0.094 1 0.481 0.497 0.094 0.06 2 0.528 0.283 0.057 2 0.527 0.288 0.055 0.15 Comparison of this solution with check solution: Number of sites in this solution matching check= 2 ... and number not matching = 0 by derivative, this is... Deriv nsame ndifferent 1 0 0 2 2 0 3 0 0 All sites in this solution are contained in check soln